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ABSTRACT 

Some inequalities concerning the It6 stochastic integral and solutions of 
stochastic different equations are obtained. 

1. Stochastic integrals. Let ( f ~ , B , P ) b e  a probability space, and w(t, to), 
t e [0, T],  to e f~, a standard Wiener process. Let B ,  t e [0, T] be an increasing 
system of sub-a-fields of  B, such that for all t e [0, T], w(s, to) (0 < s < t) is mea- 
surable with respect to Bt, and such that if tl, t2, "", tk ~ It, T], then the aggregate 
of  differences w(tj, to) - w(t, to), j = 1,2, . . . ,k  is independent of  Bt. Finally, let 
f ( t ,  to) be a real-valued measurable random function, such that for each t in 
[0, T],  f ( t ,  to) is measurable with respect to Bt and for almost all to e f~ 

fo r f~(t ,  to)dt < or. 

Under these assumptions, the It5 stochastic integral (1"1], [2]) 

fo r f ( t ,  to)dw(t, to) 

exists, and if 

then 

fo T E f2(t ,  to)dt < oo 

fo T E f ( t ,  to)dw(t, to) ffi 0 

(f: )2 y: E f ( t ,  co)dw(t, co) = E i f ( t ,  co)dt. 
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19671 SOME MOMENT INEQUALITIES FOR STOCHASTIC INTEGRALS 

REMARK. Er( ) will be used as an abbreviation for [E( )]~'. 

THF_~REM 1. If, for some p > 2, Sr E2z'lf(t, to) I "at < 0% then 

fo r to) E f(t ,  co)dw(t, P < oo 
(1) 

and 

171 

In order to prove (1) we first prove the following 

LEMMA: I f  ~(S) is non-negative and continuous; ¢(s) is non-negative, 
Lebesgue-measurable, Sr~b(s)ds < oo., and if  for 0 ~ t ~_ T and 0 < ot < 1 

(2) ~(t) < 

then 

(3) ~(t) <__ 

fO 
t 

+ $(s) ($(s)) 1 - =ds, 

(5~, + a f f  ¢(s)ds) 1/= 

5 > 0 ,  

Proof of the lemma. Under the additional assumption that #(t)is continuous 
it follows from (2) that 

d ~ + q,(s)4~ ~-"(s)ds ¢(0)4~ t-=(o) 

The above inequality can be integrated to obtain 

-< 0(0). 

and (3) follows from (5) and (2). The additional restriction that ¢(s) be continuous 
can be removed, since for almost all 0 in [0,T],  ~ +[.g~(s)~t-~'(s)ds is dif- 
ferentiable, with ¢(0)~1-=(0) as its derivative. For each such 0, (4) is true. Since 
(5 + j-g ~ t - = ) =  is absolutely continuous, it is the integral of its almost everywhere 
derivative; therefore, (5) holds and (3) follows. 

From now on the variable to will be omitted. 

Proof of Theorem 1. We assume first that a.s. If(t)[ ~ k for all t in [0, T]. 
It follows, then, from a theorem of Dynkin ([2], Theorem 7.3) that 
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and therefore all the moments of Srf(s)dw(s) are finite. For 
I~rf(s)dw(s)l "< (~ + (f~f (s)dw(s))2) p/2, and by Ito's formula [3] 

+ 

(6) 

[July 

any t5 > 0, 

The right hand side of (6) is of  the form 

(7) forFl(s)dw(s) + f orF2(s)ds. 
Since ElF (s)12 and ele (s) [ are bounded on [0, T], the expectation of  the 
first term of (7) is zero; and for the expectation of the second term the order of 
integration and expectation may be interchanged. Also, the expectation of  the 
left hand side of  (6) is continuous in t. Therefore 

Applying to (8) the Htilder inequality with tr = p/2, p = p/(p - 2) we have 

By (2) and (3) 

(9) E ( 6 +  ( Jof(s)dw(s)) ) ~_ + (p -1 )  fo r 

from which (1) follows after letting 6 ~ 0. 
In order to remove the additional restriction If(s) l  ____ k, let fn(S) 

= min In, max ( -- n,f(s))]. Since E TM If(x)I p is non-decreasing in p, the condition 
of  Theorem 1 implies that Ey~f2(t)dt < oo and S~f,(s)dw(s) converges to 
S~f(s)dw(s) in quadratic mean, Therefore there exists a subsequence n~ for which 
convergence is almost sure. For this subsequence we have 
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( f[ )p/2 (/~T \2\ p/2 
6 + ( p - 1 )  P?/"[f(s)lds __> lim E ~5 + [Jof,,,(s)dw(s)) ) 

( [" T \2\p12 

--- Jo 
where the first inequality follows from (9) and the second from Fatou's lemma. 

COROLLARY 1. Under the condition of Theorem 1. 

:o i'= f: (10) E I f(s)dw(s) < ( p -  1)p12T(t'-2)/2 Elf(s)l'ds. 

The proof follows from (9) by direct application of the H61der inequality to 
y~l E]:'[f(s) l'ds with a = p/(p - 2) and p = p/2. 

REMAgK: For p = 4, inequality (10) has been known ([1] p. 23, with 36 instead 
of (p - 1) p/2 = 9, and [4] in a weaker form). 

2. Stochastic differential equations. Let E, be the Euclidean r-space. Let 
m(t, x), (t >= O, x e E,) assume values in E,; G(t, x), (t ~_ O, x e E,) will assume real 
r x q matrix values and w(t) will denote the q-dimensional Wiener process. 
The prime (') will denote the transpose of a vector or a matrix; for vectors I • [ 
will denote the Euclidean norm, for matrices G, [G I will denote the norm 
(trace GG') 1/2 ([2] p. 209). Assume that re(t, x) and G(t, x) are measurable func- 
tions of their variables, that 

I m(t,x)- m(t'y)l <- k l x -  YI'] G(t'x) -G(t,Y)[---- k l x -  YI' (11) 

and 

fo  T I s I (t,O) p)dt ([m(t ,O) + G < o o .  

Let a be a random variable assuming values in E, and independent of w(t), t ~_ O. 
Under these assumptions, the stochastic differential equation 

(12) dx(t) = re(t, x(t))dt + G(t, x(t))dw(t), x(O) = a 

has a unique solution in [0, T], and if Elal2 < oo, then Elx(t) l  2 is bounded 
on [0, T] ([12, [23). 

TrmORr, M 2. I f  for some p > 2 

(13) fo~lm(,,O)l" + I G(,, 0) I')d, < oo 

and ~ l a l  ' < ~ ,  then [ Ix ( t )  ]" is bounded on [0, T]. 
For p = 2 this result is usually obtained (together with the existence of solution) 
by the method of successive approximations ([1] p. 47, or [2] Theorem 11.1). 
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Using Corollary 1 (and the Holder inequality instead of the Schwarz inequality), 
the same proof applies directly to convergence in thc mean of order p. The details 
are, therefore, omitted. 

THEORr.~ 3. If, for  all t ~_ O. 

(14) [ m(t,O)[ + I G(t,o) I __< kl 
then there exists a constant • such that for all t > O, for all a in E, and for all 
non-negative integers n 

(15) E.(1 + ] x(t)12) - <  (1 + l a  I Z)°e "C2n+ 1),a 

If, in addition, Io(t,x)l <= k .  (t >_ o, xeE . ) ,  then there exists a constant fl such 
that for all a and for all t >= 0 

(2n), (3 )n 
(16a) E°(l+lx(t)[2)~ ~- .~.2" ~+la l  2 e2"#'; 

(which is the same as 

(165) 

where 

E.(1 + I x(t)l~)" _ E(~(t)) 2" 

and (o is a Gaussian random variable with E(o = 0 and E ~  = 1). 

Poorf. By Ito's formula ([2], [3]), for n = 0,1, 2,... 

:o' (I + [x(t)]2)" = (1 + ]a]2)" + 2n(1 +]x(s)12)"-Ix'(s)m(t,x(s))ds 

+ f l  2.,, + 

(17) + ~ 1 + I x(s)[2)"-I 2n. trace (G. O')ds 

1 ; 4n(n - 1)(1 +{ x(sl[ + 5  2f'- 2 x '( s) GG ' x(s)d s. 

The right hand side of (17) is of the form 

f: fo (1 + I a]~) * + F(s)dw(s) + f(s)ds. 

By the result of Theorem 2, E I F(s)l 2 and EJf(s)l are bounded on any bounded t 
interval. Therefore ESg F(s)dw(s) -- 0 and Eo(1 +Ix(t)]2) ~ is continuous in t. 
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From (11) and (14) it follows that for some 

I m(',x)l ~ ~(I + Ixl=) ''= 

IG(t ,x) l  = = trace(GG')  < ~(1 + Ixl=). 
Therefore, from (17), 

£' (18) ~o<1 + I x(,)12) . -<_ (1 + l a 12)" + .(en + 11~ Ea(1 + Ix(s) 12)'ds 

Setting Ea(1 + Ix(t)]2), = ¢.(t) and since Cn(t) is continuous in t, we have from (18) 

1 fo' } d e -n(z"+ 1)~t dp.(s)ds 

< ~b,(0)e-,(2,+ 1)a, 
ds = 

Integrating and substituting in (18), we get (15). 

From the condition [G[ <= k2, (11) and (14) it follows that for some 

I m(t,x)l =< ~(1 + Ixl2) ''2 

I G(t,x) 12 _- </~. 
Therefore, from (17), for n = 1, 2, ... 

L fo (19) 4~(t) _~ 4,n(0) + 2n~ ~n(s)ds + n(2n - 1)p ?A-t(s)ds, 

o r  

I fo' / d e -2"a' ~b, <')d, , P 

< e- 2n#t Jo dt - dPn(O ) + n(2n - 1)fie -2n#t ¢~n-l(S)ds. 

Integrating and substituting in (19) 

:o' (20) 4~.(t) N 4~.(0)e 2~#' + ,6n(2n - 1)e 2~#t e-2,#~q~._ l(s)ds. 

Repeated applications of (20) yield 

d~(t) < ~ (2n)l(~l(O))lBn-te2"Ptn:t ,n- i), 
= ~ ,  ~, 

where ~ = o 
Q(t,O) = 1 

Io' Q(t,j) = Q(~.j - 1)e-2#~ d[ 

= ( 2 ~ y ( 1  -- e-2't)  J 
j i  • 
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Therefore 

4,.(t) =< 
t=0 

and, since (20! > 2ii!, 

(q~l(0))i(2n) !(1 - e-#') "- 
(2 i ) !4 (n_ . - i i ) [  , 

(2n)! ~ (~,(0))'(1 - e-#')"-Sn[ 
~b.(t) <= ~ ,=o i t ( n -  i)v2.-~. 

1 - 

This proves (16a), and (16b) follows from the fact that for ~ Gaussian with zero 
expectation 

E~ 2n (2n)  ! 
= n!2-  (El2)"" 
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